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Abstract
The structure of magnetic polarons in doped two-dimensional antiferromagnets on square and
triangular lattices is analyzed. We study the case when a conduction electron is bound by a
nonmagnetic donor impurity and forms a ferromagnetic core of the size about the electron
localization length (bound magnetic polaron). The exchange interactions between nearest and
next-nearest neighbors are taken into account. The crystal is assumed to have a uniaxial
magnetic anisotropy. It is found that the magnetic polaron can produce rather extended spin
distortions of the antiferromagnetic background around the core. In a wide range of distances r
from the core, these distortions decay as 1/r 2 and 1/r for square and triangular lattices,
respectively. The characteristic size of this ‘coat’ decreases when the contribution of the
next-nearest-neighbor interactions increases. It is shown that the ‘coated’ magnetic polaron may
be favorable in energy in comparison to the usually considered polaron having the
ferromagnetic core without extended spin distortions. We also discuss briefly the shape and the
structure of standard unbound (or free) magnetic polarons on square and triangular lattices.

1. Introduction

The formation and structure of small ferromagnetic (FM)
metallic droplets (magnetic polarons or ferrons) in an
antiferromagnetic (AFM) insulating matrix was discussed
beginning from the late 1960s [1, 2] (see [3, 4] for reviews).
The simplest case of such objects is a well-defined magnetic
polaron with exponentially decreasing tails of magnetic
distortions around it. In this case, the intermediate region
where the canting angle ν (the angle between nearest-neighbor
local spins) changes from 0 (FM domain) to π (AFM domain)
is of the order of the interatomic distance d and the radius of
the magnetic polaron is a well-defined quantity [5, 6].

However, in the seminal paper of de Gennes on double
exchange, the possibility of a slow decay of the AFM order
distortions (dipole-like decay of distortions) was discussed [7].
An attempt to get such a type of ‘coated’ magnetic polarons
was made for a one-dimensional (1D) AFM chain in [8–10].

In these papers, it was shown that the characteristic length of
the distorted spin surroundings is much larger than the size of
the trapping region. In [11], this 1D model was extended to
the two-dimensional (2D) case and it was found that the spin
distortions decay as 1/r 2 on a square lattice.

In the present paper, we generalize the model considered
in [11] to the case of frustrated lattices. We consider two types
of 2D frustrated lattices of antiferromagnetically coupled local
spins Sn, namely the square lattice with nearest-neighbor (NN)
and next-nearest-neighbor (NNN) or diagonal interactions and
the triangular lattice.

Since a lot of magnetic oxides including manganites and
cobaltites have layered magnetic structures, and a 2D structure
is simply a limiting case of the layered system, our results
could be applicable to real magnetic materials.

This paper is organized as follows. In section 2,
we introduce the model Hamiltonian and the magnetic
configuration of local spins in the absence of conduction
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electrons. In section 3, we find the wavefunction and the
energy of a conduction electron bound by a donor impurity.
In section 4, we calculate the magnetic structure of a ‘coated’
magnetic polaron. In section 5, we find the energy of a ‘coated’
magnetic polaron and compare it with the energy of a ‘bare’
one (a ferromagnetic core without extended spin distortions).
In section 6, we discuss the case of unbound magnetic polarons
on square and triangular lattices. Finally, in section 7, we
summarize our work.

2. Model Hamiltonian

In our model, we treat local spins as classical vectors. We
assume that the crystal has uniaxial magnetic anisotropy.
Nonmagnetic donor impurities are located in the centers
of some unit cells of the lattice. It is assumed that the
concentration of dopants is small enough, and therefore we can
consider an isolated impurity and restrict ourselves to a single-
electron problem. We consider an electron which is bound
at a donor impurity by the Coulomb attractive potential. The
Coulomb potential V is assumed to be strong in comparison to
the other relevant interactions. Namely

V ∼ JH � t � J > J
′ � K , (1)

where JH is the Hund’s rule coupling, t is the electron hopping
integral, J and J

′
are the NN and NNN AFM exchange

interactions, respectively, and K is a constant of the magnetic
anisotropy. For this range of parameters, the radius of the
electron localization is of the order of d . Below we will
measure the distance in units of the lattice constant d , assuming
d = 1.

We represent classical spins in the form Sn = Sen, where
en is a unit vector, describing the direction of Sn. The model
Hamiltonian can be written as

Ĥ = Ĥel + Ĥm, (2)

where

Ĥel = −t
∑

〈nm〉σ
â†

nσ âmσ − 1

2
JH

∑

nσσ ′
â†

nσ (enσ )σσ ′ ânσ ′

− V
∑

nσ

â†
nσ ânσ

|n − n0| , (3)

Ĥm = J
∑

〈nm〉
enem + J

′ ∑

〈〈nm〉〉
enem + ĤK . (4)

In these equations, â†
nσ , ânσ are the creation and annihilation

operators for a conduction electron with spin projection σ at
the site n, σ are the Pauli matrices, and symbols 〈· · ·〉 and
〈〈· · ·〉〉 denote the summation over nearest neighbors and next-
nearest neighbors, respectively. The first two terms in Ĥel

describe the kinetic energy of the conduction electrons, and
the Hund’s rule coupling between the conduction electrons and
the localized spins, respectively. The last term in Ĥel describes
the Coulomb interaction between electrons and the impurity
ion located in the center of the unit cell. The first and second
terms in Ĥm are the AFM exchange between local spins. The
last term is the magnetic anisotropy energy (we will give an

explicit expression for this term below). Note that, in contrast
to a standard notation, the Hund’s rule coupling constant JH

already includes the factor S and, similarly, exchange integrals
J and J ′ include the factor S2.

Let us consider Ĥm without an anisotropy term. This
is the so-called 2D J–J

′
model. In the classical limit, the

minimum energy configuration of this model on a square lattice
has the conventional Néel order (with two sublattices) for
J

′
/J < 1/2 [12]. The minimum energy configuration of the

2D J–J
′

model on a triangular lattice corresponds to three
sublattices with spins in sublattices 2 and 3 rotated by ±120◦
with respect to sublattice 1 (the Yafet–Kittel order) for J

′
/J <

1/6. We consider the Néel order on a square lattice and the
Yafet–Kittel order on a triangular lattice. Note that, in the
range of parameters under study (J, J ′ � K ), the anisotropy
term does not change the proposed ground state magnetic
configuration and only breaks the rotational symmetry of the
Ĥm Hamiltonian.

3. Energy of conduction electron

Conduction electrons, appearing at doping, change the
antiferromagnetic order of local spins around them. In order
to find the magnetic structure at n 	= 0, we need to diagonalize
first the electronic Hamiltonian Ĥel. As was mentioned above,
at small doping n � 1, one can consider a single-electron
problem. In this section, we find the energy of the conduction
electron both on square and triangular lattices.

We assume that all local spins lie in the xy plane, that is

Sn = S{cos φn, sin φn, 0}, (−π < φn � π). (5)

Note that we treat local spins as classical vectors. In such
a treatment for the two-dimensional case, there is not much
difference between the Heisenberg model with the usual 3D
spins and the xy model. In the limit of strong Hund’s rule
coupling, JH → ∞, the spin of the conduction electron at site
n should be parallel to Sn. In this case, the wavefunction of the
conduction electron can be written as

|�〉 = 1√
2

∑

n

�n
(
â†

n↑ + exp (−iφn)â
†
n↓

)|0〉,
∑

n

|�n|2 = 1,

(6)

where |0〉 is the vacuum state. The energy of the conduction
electron in the state |�〉 is then

Eel[�] = 〈�|Ĥel|�〉 = −t
∑

〈nm〉

[
Tnm�∗

n�m + T ∗
nm�n�

∗
m

]

− 1

2
JH − V

∑

n

|�n|2
|n − n0| , (7)

where

Tnm = 1

2

[
1 + exp

(
i(φn − φm)

)] = cos
νnm

2
exp (iωnm),

νnm = φn − φm, ωnm = νnm

2
.

(8)
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Here, νmn is the angle between local spins Sm and Sn (canting
angle), and ωmn is the Berry phase [13, 14]. Note that we
consider here a planar configuration of local spins, so all angles
in equation (8) are within the xy plane.

The ground state electron energy at given angles φn is
found by minimization of equation (7) with respect to �n. In
the limit of strong electron–impurity coupling, V → ∞, we
can assume that �n are nonzero only at sites nearest to the
impurity (n j , j = 1, . . . , 4 for a square lattice, j = 1, . . . , 3
for a triangular lattice). In this case, we obtain an analytical
expression for the electron energy:

Eel(φi) = −1

2
JH − V

a
− tε(ci j ), (9)

where

ε(ci j) = 1√
2

[
c2

12 + c2
23 + c2

34 + c2
41

+
[
[(c12 − c34)

2 + (c23 + c41)
2]

× [(c12 + c34)
2 + (c23 − c41)

2]
]1/2

]1/2

, a = 1√
2
(10)

for a square lattice, and

ε(ci j) = g(ci j) + c2
12 + c2

23 + c2
31

3g(ci j)
,

g(ci j) =
[
c12c23c31 + 1

3
√

3
|(c2

12 + c2
23 + c2

31)
3

− 27c2
12c2

23c2
31|1/2

]1/3
, a = 1√

3

(11)

for a triangular lattice. In these equations, φi = φni , ci j =
cos[(φi − φ j)/2] and a is the distance (in units of lattice
constant d) between the impurity ion and the site nearest to
the impurity.

The electron energy Eel has a minimum when all spins
Sn j are parallel to each other. So, we have a bound magnetic
polaron state, which can be described by a ferromagnetic core
of radius a embedded into the antiferromagnetic matrix.

4. Magnetic structure

Now, we consider the magnetic structure in the system of local
spins with one bound electron. It can be done by minimization
of the total energy

E = Eel(φi) + Em,

Em = J
∑

〈nm〉
cos(φn − φm) + J

′ ∑

〈〈nm〉〉
cos(φn − φm) + HK (φn)

(12)
with respect to angles φn, but it is convenient to make first
the following transformation. In the absence of a magnetic
polaron, the square lattice consists of two magnetic sublattices
with antiparallel magnetizations. In one sublattice, we perform
the transformation of angles φn → π + φn. As a result,
an AFM order becomes an FM one, and vice versa. Such a
transformation allows us to work with a continuously changing

orientation of spins outside the ferron core. A triangular lattice
consists of three magnetic sublattices with magnetizations
rotated with respect to each other by an angle 2π/3. In two
of them, we perform the transformation of the angles φn →
φn ± 2π/3.

In expression (12), HK (φn) is an anisotropy term. We
assume that, after the transformation of angles, the magnetic
anisotropy term has the same form both for square and
triangular lattices:

HK (φn) = K
∑

n

sin2 φn, (13)

where K effectively contains a factor S2, in contrast to
the standard notation. For a square lattice, embedded into
equation (13) describes the usual uniaxial magnetic anisotropy
with the x axis being an easy axis, whereas for a triangular
lattice, this kind of anisotropy favors the alignment of spin
along one of the sides of the triangular unit cell in each
sublattice.

From the symmetry considerations, it is clear that angles
φi for local spins inside the magnetic polaron are related to
each other by some relationships. In the case of a magnetic
polaron with extended spin distortions, these relationships are
the following:

φ1 = φ3 = φ0, φ2 = φ4 = −φ0, 0 < φ0 � π/2
(14)

for a square lattice and

φ1 = 0, φ2 = −φ3 = φ0, 0 < φ0 � 2π/3 (15)

for a triangular lattice.
We find the magnetic structure by minimization of the

total energy (12), for a triangular lattice numerically (similar
calculations for a square lattice without a J ′ term were carried
out in [11]). In order to get analytical estimations concerning
the behavior of spin distortions, we also perform calculations
of the magnetic structure in the continuum approximation.
Namely, angles φn are treated as the values of the continuous
function φ(r) at points r = n − n0. This approximation
is valid when canting angles do not change significantly
between two neighboring sites. Expanding φ(r) on the nearest-
neighbor sites in a Taylor series up to second order in the
intersite distance and changing in (12) the summation by
integration over r outside the magnetic polaron core, we find
an approximate expression for the magnetic energy Em =
E1

m + E2
m:

E1
m = 8J

(
1 + κ0

4

)
sin2 φ0 (16)

for square lattice,

E1
m = J

(
1

2
− 4 cos2

(π

3
− φ0

2

)

+ 8 cos4
(π

3
− φ0

2

)
+ 3κ0

4
sin2 φ0

)
(17)

for a triangular lattice, and

E2
m = αJ

(
1 − η

ηc

) ∫

|r|�a
d2r

[
(∇φ)2 + κφ2

]
, (18)

3
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where η = J
′
/J , κ0 = K/(αJ ), κ = κ0/(1 − η/ηc),

and ηc = 1/2, α = 1/2 (ηc = 1/6, α = 3/8) for a
square (triangular) lattice. We assume that the state without
magnetic polarons has zero energy. The term E1

m comes from
the summation over spins in the magnetic polaron core. In E2

m
we use an approximation sin2 φn ≈ φ2

n in the anisotropy term.
Minimizing the energy E2

m with respect to an angle φ(r),
we obtain


φ − κφ = 0. (19)

Equation (19) should be solved with the boundary conditions
at infinity:

φ(r) → 0, r → ∞, (20)

and with some boundary conditions at the surface of the
magnetic polaron.

We model the magnetic polaron by a circle of radius
a and choose φ(r) using the Dirichlet boundary conditions
φ(r)|r=a = φ̃(ζ ), where we introduce polar coordinates (r, ζ )

in the xy plane. The function ϕ̃(ζ ) can be found in the
following way. On a square lattice, ϕ̃(ζ ) should satisfy the
symmetry conditions (14) at points ζ j = π(2 j − 1)/4:

φ̃(ζ j) = φ j , j = 1, 2, 3, 4. (21)

On a triangular lattice, ϕ̃(ζ ) should satisfy the symmetry
conditions (15) at points ζ j = 2π( j − 1)/3:

φ̃(ζ j) = φ j , j = 1, 2, 3. (22)

Since the function φ̃(ζ ) is a periodic one, it can be expanded
in a Fourier series:

φ̃(ζ ) =
∞∑

m=0

[am cos (mζ ) + bm sin (mζ )]. (23)

Keeping the minimal number of terms in these series needed to
satisfy the boundary conditions (21) or (22), we obtain

φ̃(ζ ) = φ0 sin 2ζ (24)

for a square lattice and

φ̃(ζ ) = 2φ0√
3

sin ζ (25)

for a triangular lattice.
The solution to equation (19) is

φ(r) = φ0
K2(r/R∗)
K2(a/R∗)

sin 2ζ (26)

for a square lattice and

φ(r) = 2φ0√
3

K1(r/R∗)
K1(a/R∗)

sin ζ (27)

for a triangular lattice, where K1(x) and K2(x) are the
Macdonald functions of the first and second order, respectively.

The characteristic decay length of the spin distortions
around the ferromagnetic core is R∗ = 1/

√
κ:

R∗ = R0

√
1 − η

ηc
, (28)

where R0 = 1/
√

κ0 ∼ √
J/K � 1 is the decay length of the

distortions in the absence of the NNN interaction. We see that
R∗ decreases with the growth of η = J ′/J , the ratio between
the NNN and NN coupling constants. Note that the continuum
approximation fails at R∗ ∼ 1, when η is closed to ηc . In the
limit η → ηc, the decay length of distortions becomes less than
the lattice constant and the ‘coat’ disappears.

Within the range r < R∗, φ(r) behaves as a2/r 2

for a square lattice and as a/r for a triangular lattice,
whereas at large distances, it decreases exponentially φ(r) ∝
exp(−r/R∗). Let us note that, in the case of low anisotropy
(K � J ), the distance, where the function φ(r) has a
power-law behavior, can be large enough (in agreement with
the argument of de Gennes [7]). Let us recall that a rather
weak uniaxial anisotropy leads to the competition between the
energy loss due to the alignment of spins perpendicular to the
anisotropy axis and the energy gain due to a slower decay of
distortions.

5. Energy of magnetic polaron

Let us calculate the energy of the ‘coated’ magnetic polaron,
Ecoated

f , in the continuous approximation. Substituting
solutions (26) and (27) in equation (18) and performing the
integration, we find

E2
m = π Jφ2

0

(
1 − η

ηc

) [
1 + a

√
κ Ks(a

√
κ)

2Ks+1(a
√

κ)

]
, (29)

where s = 1 (s = 0) for a square (triangular) lattice. We
remind ourselves that the total magnetic energy Em = E1

m +
E2

m, where E1
m is given by equations (16) and (17) for different

lattices.
Substituting the symmetry relations (14) and (15) for

angles φi into expression (9) for electron energy, we express
the energy of a conduction electron Eel via the angle φ0:

Eel = −2t sin φ0 (30)

for a square lattice and

Eel = −tε(y), y = cos
(π

3
− φ0

2

)
,

ε(y) = g(y) + 2y2 + (2y2 − 1)2

3g(y)
,

g(y) =
[

y2(2y2 − 1) + 1

3
√

3

∣∣1 − 3y2 − 6y4 + 8y6
∣∣
]1/3

(31)
for a triangular lattice.

The energy of a ‘coated’ magnetic polaron is Ecoated
f =

Eel(φ
∗
0 ) + Em(φ∗

0 ), where the angle φ∗
0 is found by

minimization of Ecoated
f . Note that this angle differs from π/2

(on a square lattice) or 2π/3 (on a triangular lattice) at any
finite t/J , and φ∗

0 → π/2 (φ∗
0 → 2π/3) at t/J → ∞,

that is, canting angles inside the magnetic polaron core are
nonzero. This means that the ‘coated’ magnetic polaron has
a magnetization lower than its saturation value. It follows
from (29) that the energy of the ‘coated’ magnetic polaron

4
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increases with the growth of the constant K of magnetic
anisotropy.

In addition to a ‘coated’ magnetic polaron, there is another
solution to the set of equations ∂(Eel(φi) + Em({φn}))/∂φn =
0, describing the magnetic polaron without spin distortions
(‘bare’ magnetic polaron). The angles φn for the local spins
(after the transformation described above), corresponding to
this solution, are the following:

φn = 0, n 	= n j , φn1 = φn3 = 0,

φn2 = φn4 = π
(32)

for a square lattice and

φn = 0, n 	= n j , φn1 = π,

φn2 = −φn3 = −φ
′
0, 0 < φ

′
0 � π/3

(33)

for a triangular lattice. The energy of a ‘bare’ magnetic polaron
is

Ebare
f = −2t + 16

(
1 − 3

4η
)

J (34)

for a square lattice and

Ebare
f = −tε

(
sin

(φ
′
0

2
+ π

3

))

− 10η
(

2 − cos φ
′
0

)
J + 3κ0

4
J sin2 φ

′
0

+
[

19

2
− 2 sin

(
φ

′
0 + π

6

)
− 4 cos

(
φ

′
0 + π

3

)

− cos
(

2φ
′
0 + π

3

)]
J (35)

for a triangular lattice, where the function ε(y) is given by
equation (31) and the angle φ

′
0 is found by minimization of

Ebare
f .

Note that expressions (34) and (35) are derived by exact
minimization of the total energy. If we compare the energies
of ‘bare’ and ‘coated’ magnetic polarons using formulae of
the continuous approximation for Ecoated

f , we obtain for a
triangular lattice that, even for K = 0, 
E = Ecoated

f −Ebare
f >

0 (for a square lattice we have in this case 
E < 0). The
numerical analysis shows, however, that 
E < 0 (we consider
a cluster containing 40 × 40 sites, and the further increase
of the number of sites does not change the obtained results).
For example, at t = 50J and J

′ = K = 0, the numerical
calculations give 
E/J = −1.2. Thus, formulae for Ecoated

f
of the continuous approximation overestimate significantly the
magnetic polaron energy. A main error comes from the region
near the magnetic polaron. On the other hand, the analysis
shows that these formulas properly describe the dependence
of Ecoated

f on the model parameters. Thus, at relatively
small values of K/J , the ‘coated’ magnetic polaron is more
favorable in energy than the ‘bare’ one, both for square and
triangular lattices.

6. Free and bound magnetic polarons

Let us notice again that in the previous sections we considered
‘coated’ and ‘bare’ magnetic polarons bound by nonmagnetic

donor impurities. Effectively, we were dealing with an
insulator (the Mott limit) with a small density of the charge
carriers n � 1/R2∗, where the ‘coats’ of bound polarons do
not overlap. In this limit, we find that the ‘coated’ state of
the bound magnetic polaron with nontrivial magnetic structure
of slowly decaying spin distortions at intermediate distances
a < r < R∗ and non-saturated small FM core for r < a is
more favorable in energy. Note that, for the typical anisotropy
energies K/J ∼ 10−2, we have R∗ = (J/2K )1/2 � 7
(J

′ = 0) in units of the lattice constant d . At the same time,
a ∼ 1.

Let us now consider the model without impurity ions (V =
0). Here and further on in this section, n denotes the density of
conduction electrons. Even without interaction with impurities
the charge carriers can become self-trapped (a conduction
electron forms the well of FM-ordered local spins and becomes
bound by it), giving rise to magnetic polarons. Let us refer to
such polarons as unbound or free. It is interesting to compare
the size and the structure of free and bound (‘coated’) magnetic
polarons for square and triangular lattices. In [15], it was
shown that the radius of a free magnetic polaron on a square
lattice is

Rpol =
(

j 2
0,1t

4π J

)1/4

, (36)

where j0,1 is the first zero of the Bessel function, J0( j0,1) = 0.
This result is obtained by the standard minimization procedure
(see [15] for details). The most favorable shape of the
magnetic polaron is a circle with an area � = π R2

pol. To be
more specific, in order to find Rpol from the � function of
the electron inside the magnetic polaron with rigid boundary
conditions �(r = Rpol) = 0 in the 2D circular geometry, we
have to find the energy of the deepest bound state (counting
from the bottom of the potential well) in the well with the depth
W/2 (W = 2zt , where z is the number of nearest neighbors)
and the width r = Rpol (where r is the polar coordinates in
2D) [15]. The corresponding Schrödinger equation is

Ĥ� = E�, where

Ĥ = −t
r = −t

(
∂2

∂r 2
+ 2

r

∂

∂r

)
. (37)

As a result, Ekin = t ( j0,1/Rpol)
2. We also take into account the

loss in the Heisenberg exchange energy, which for the circular
shape of the magnetic polaron yields

Emag = π J z R2
pol. (38)

After that, we minimize the total energy Etot = Ekin + Emag

with respect to Rpol and arrive at the result (36).
In the same manner, we can get the radius and the most

favorable shape of a free magnetic polaron on the triangular
lattice in the case of the planar spin configurations. It is again
a circle with a radius

Rpol =
(

j 2
0,1t

3π J

)1/4

. (39)

Note that the difference for the Schrödinger equation on
a triangular lattice from equation (37) is a factor 3/4 at t
r .

5
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This difference is just a difference in effective masses for the
two lattices. Hence, the volumes (areas) of free magnetic
polarons on square and triangular lattices in 2D differ only

by a numerical factor �square

�triang
=

√
3
4 . For the values typical of

manganites, t
J ∼ 100, we have Rpol ∼ 3 for free polarons

both on square and triangular lattices. Hence, the typical sizes
(extensions) of free and bound polarons are of the same order
of magnitude: R∗ � (5–7) for the bound polaron and Rpol �
(2–3) for the free polaron. However, their structures are quite
different. Note that a free polaron has a saturated FM core of
the size of Rpol and very rapidly (exponentially) decaying spin
distortions outside of it (see [8]).

It is interesting to follow more closely how the free
and bound magnetic polarons become more similar when we
decrease the value of the Coulomb interaction energy V (or
enhance the density of impurity ions). Preliminary estimates
show that the bound magnetic polarons with the structure,
considered in this paper, exist for V > Vc ∼ 2t . For V < Vc,
the FM core of the bound magnetic polaron starts to grow and
could reach the typical values of the core of the free magnetic
polaron, so the free and bound magnetic polarons are very
similar in this case. Note that in real manganites V ∼ Vc.

It is possible, also, to estimate the typical Mott limit value
of the critical charge carrier density (corresponding to non-
overlapping polarons) nc for manganites: nc ∼ 1/R2∗ in 2D.
So, nc � (0.5–1)% if R∗ � (5–7).

7. Conclusions

We considered the structure of bound magnetic polarons in 2D
antiferromagnets with square and triangular lattices. We found
that the magnetic distortions created by a magnetic polaron
decay as 1/r 2 and 1/r on square and triangular lattices,
respectively. On a triangular lattice, the magnetic distortions
decay more slowly (as 1/r ) due to the strong geometrical
frustration. On the other hand, the additional frustration
coming from the NNN exchange interaction decreases the
characteristic decay length of the spin distortions R∗ around
the ferromagnetic core. At not too large a magnetic anisotropy
constant, the difference in energies of ‘coated’ and ‘bare’
magnetic polarons, 
E , is negative and the ‘coated’ magnetic
polaron is more favorable than the ‘bare’ one.

Note that on a triangular lattice the value of η = J ′/J ,
when the transformation of magnetic configuration takes place,
is about 0.77ηc. However, the long-range spin distortions
exist when R∗ ∼ √

(1 − η/ηc)J/K � 1, and the difference
between ηc and 0.77ηc does not lead to the qualitative
difference in the behavior of spin distortions.

Our results were obtained in the limit of strong electron–
impurity coupling, V → ∞. In this case, the wavefunction
�n of the conduction electron is nonzero only at the sites

nearest to the impurity, and one can calculate the electron
energy Eel exactly. At finite V , the wavefunction extends over
larger distances and we should calculate the magnetic structure
simultaneously with �n. As we already mentioned, even at
V = 0, the magnetic polaron is a stable object in a wide range
of parameters of the model. This (unbound or free) magnetic
polaron exists due to the trapping of a charge carrier in the
potential well of ferromagnetically oriented local spins.

The structure of ‘coated’ magnetic polarons can be
more complicated on kagomé lattices or for the lattices with
more complicated types of magnetic interactions (self-trapped
magnetic polarons in the case of anisotropic exchange integrals
were investigated in [15]).
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